当前位置:首页 > 教学范文 > 教学设计

《按比例分配》教学设计

时间:2023-11-04 19:13:14
《按比例分配》教学设计

《按比例分配》教学设计

作为一位杰出的教职工,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的《按比例分配》教学设计,欢迎阅读与收藏。

《按比例分配》教学设计1

教学内容: 按比例分配

教学目标:

1、使学生理解按比例分配的意义。

2、掌握按比例分配应用题的特征及解题方法。

3、培养学生应用所学知识解决实际问题的能力。

教学重点:

掌握按比例分配应用题的特征及解题方法。

教学难点:

按比例分配应用题的实际应用。

教学过程:

一、复习引入

1、填空

已知六年级1班男生人数和女生人数的比是:3:2。

(1)男生人数是女生人数的( )

(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

2、口答应用题

六年级(1)班和二年级(1)班 ……此处隐藏11587个字……>课后反思:

在练习十四第4题后,进行相应的练习后,出示一道练习题:一个三角形的三个内角度数的比是2∶3∶4,这个三角形是什么三角形?

生1:是锐角三角形,因为通过计算,我知道三个内角分别是40,60,80所以是锐角三角形。

师:你讲得非常好。

生2:不要把三个角都求出来,只要求一个最大的角就行了:1804/9=80,所以是锐角三角形。

师:你分析问题的方式很独特,分析得很有道理。

生3:其实一个角也不用求,就知道它是锐角三角形,因为三个角加起来是9份,而最大的角只占4份,没有达到9份的一半,也就是它的度数没有达到180的一半,所以是锐角三角形。

说句实在话,当时我都有点听蒙了。

师:哪个同学能把的想法重说一遍?

生4:

师:那如果三个内角的度数比是2∶3∶5呢?或者是2∶3∶7呢?又各是什么三角形呢?

反思中的反思:

学生是可畏的,更是可敬的。在练习阶段,学生能运用所学的知识和原有的经验解决问题,在宽松、和谐、民主的氛围中,学生思维是如此的活跃,方法是如此的灵活,体现了思维的价值,很好地诠释了尝试从不同角度寻求解决问题的方法,并能有效地解决问题的新课程精神。

课后反思:

这课内容按照知识点来划分属于按比例分配内容,解决这类问题的策略有两个:一是将比转化成份数来理解,先求出每一份是多少;二是将比转化成分数,然后按照分数应用题来解答。这两种方法共同的数学思想方法是转化。

在课堂教学中,学生能结合具体图例,自己想到这两种解答方法,在师生的进一步对话中,体会到用这两种方法解答时,都得渗透对应思想。

《《按比例分配》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式